

Tikrit University College of Veterinary Medicine

muscular system

Subject name: physiology Subject year:2nd Lecturer name:Wasan Sarhan, Muneef Saab Academic Email:wasansarhan@tu.edu.iq muneef.s962@tu.edu.iq

Tikrit University- College of Veterinary Medicine Email: cvet.tu.edu.iq

2025-2024

Functions of the muscular system

1. Locomotion

2. **Vasoconstriction** and **vasodilatation**- constriction and dilation of blood vessel Walls are the results of smooth muscle contraction.

3. **Peristalsis** – wavelike motion along the digestive tract is produced by the Smooth muscle.

4. Cardiac motion

5. **Posture maintenance-** contraction of skeletal muscles maintains body posture and muscle tone.

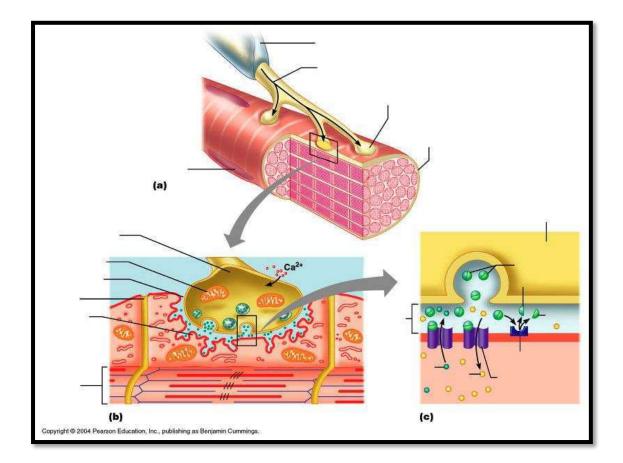
6. **Heat generation** – about 75% of **ATP** energy used in muscle contraction is released as heat.

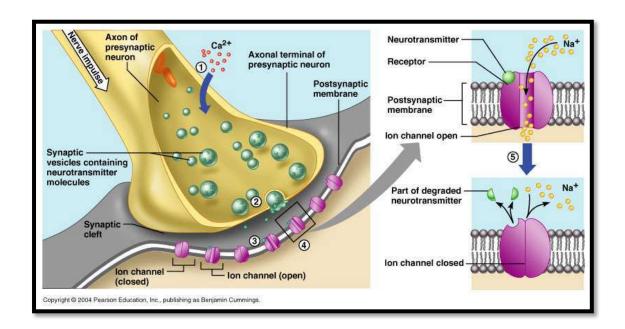
Muscle characteristics:

Striation: only present in skeletal and cardiac muscles. Absent in

smooth muscle.

Nucleus: smooth and cardiac muscles are uninculcated (one nucleus per cell), skeletal muscle is multinucleated (several nuclei per cell).


Transverse tubule (T tubule): well developed in skeletal and cardiac muscles to transport calcium. Absent in smooth muscle.


Intercalated disk: specialized intercellular junction that only occurs in cardiac muscle.

Control: skeletal muscle is always under voluntary control, with some exceptions (the tongue and pili arrector muscles in the dermis). smooth and cardiac muscles are under involuntary control.

Innervation: motor unit

a) a **motor nerve** and a **myofibril** from a **neuromuscular junction** where gap (called **synapse**) occurs between the two structures. at the end of motor nerve, neurotransmitter (i.e. acetylcholine) is stored in **synaptic vesicles** which will release the neurotransmitter using exocytosis upon the stimulation of a nerve impulse. Across the synapse the surface the of myofibril contains **receptors** that can bind with the neurotransmitter

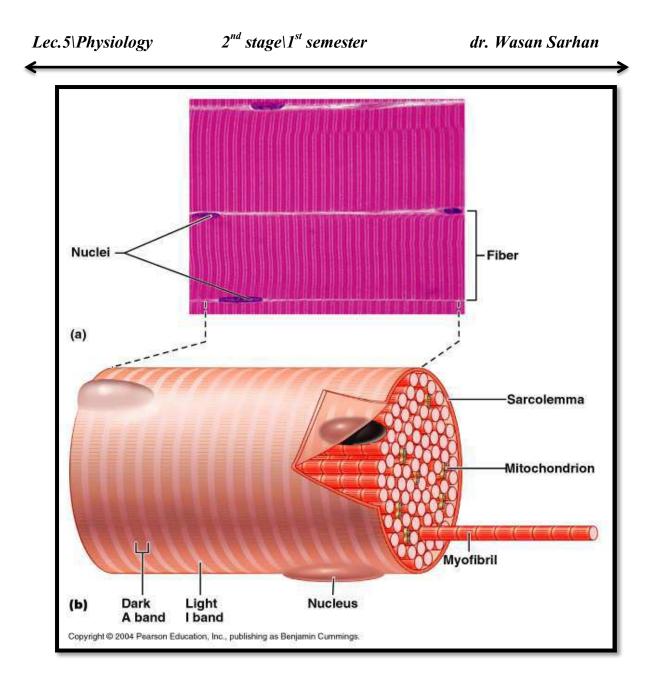
Skeletal muscle fiber

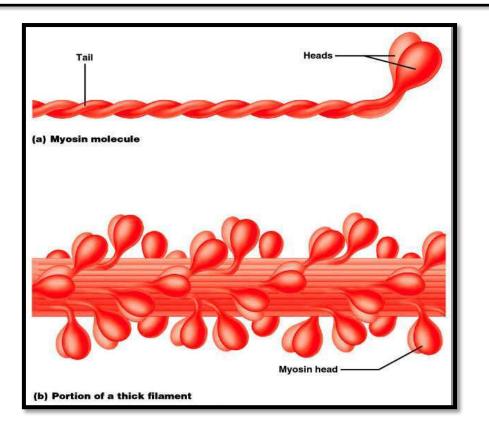
1. Each skeletal muscle fiber is a single muscle cell , which is the unit of contraction .

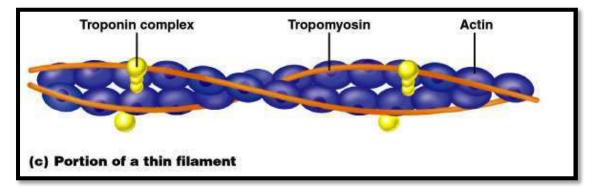
2. Muscle fibers are cylindrical cells with many nuclei .

3. The cell membrane is called . Sarcolemma, the cytoplasm is called

sarcoplasm .


4. The sarcoplasm contains abundant , parallel thread like myofibrils , that run in parallel fashion .


5. The myofibrils contain 2 kinds of protein filaments .

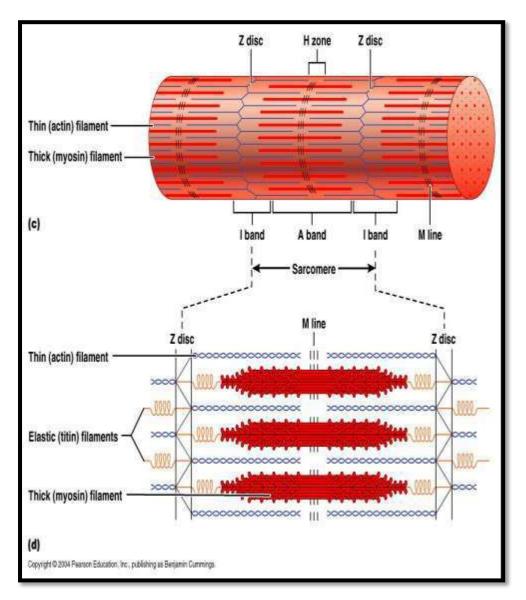

a. Thick filaments -composed of myosin .

b. Thin filaments - composed of Actin , troponin and tropomyosin .

c. striations are produced by alternating light and dark filaments .

Striation pattern of skeletal muscles: 2 parts

1. The I bands (The light bands) - Extends from the edge of one stack of thick filaments to the edge of next stack of thick filaments .


- The I band is composed of thin actin filaments .

2. The A bands (The dark bands) – composed of thick myosin filaments , overlapping thin filaments (actin) .

- myosin filaments are held together by Z lines (not attached) .

- A band consist of a region Where the thick and thin filaments overlap , and a region called central region (H zone) , consisting of only thick filaments . In the center of A band is a dark band called the M line .

Sarcomere : The segment of myofibrils that extends from one Z line to the next Z line.

Cross bridge Attachment:

The activated myosin heads are attracted to the exposed binding sites on actin and cross bridge attachment occurs .

Power stroke : The sliding action , which occurs at the same time for thousands of actin and myosin molecules is referred to as the power stroke.

Role of Ca+ in muscle contraction:

- 1. Promotes neurotransmitter release .
- 2. Triggers Ca+ release from SR.
- 3. Triggers sliding of my filaments and ATpase activity .
- 4. promotes glycogen breakdown & ATP synthesis .

Sliding Filament Theory

1. A myofiber , together with all of its myofibrils , shortens by movement of the insertion towards the origin of the muscle .

2. Shortening of the myofibrils is caused by shortening of the sarcomere

(The distance between Z lines is reduced).

3. shortening of the sarcomere is accomplished by each filament remains the same during contraction .

4. sliding is produced by power strokes of myosin cross bridges , which pull the thin actin over the thick myosin .

5. The A band remains the same length during contraction , but are pulled toward the origin of the muscle .

6. Adjacent A bands are pulled closer together as the I bands between them shorten .

7. The H band shorten during contraction as the thin filaments on the sides of the sarcomeres are pulled towards the middle.

Major Events of muscle contraction :

1. The distal end of a motor neuron releases Acetylcholine .

2. Acetylcholine diffuse across the gap at the neuromuscular junction .

3. The sarcolemma is stimulated , and a muscle impulse travels over the surface of the muscle fiber and deep into the fiber through the transverse tubules and reaches the sarcoplasmic reticulum .

4. Ca2+ ions diffuse from the sarcoplasmic reticulum into the sarcoplasm bind to troponin molecules .

5. Tropomyosin molecules move and expose specific sites on actin filament.

6. Actin and myosin filaments form linkages .

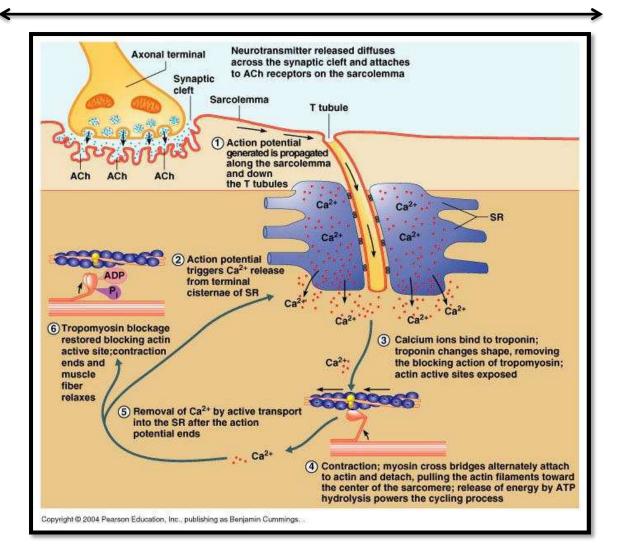
7. Actin filaments are pulled inward by myosin cross – bridges .

8. muscle fiber shortens as a contraction occurs .

Smooth Muscle Contraction

1. Smooth muscles contain filaments of actin and myosin .

2. Lack transverse tubules and S.R. is not well developed .


3. Display rhythmieity (spontaneous repeated contractions), responsible for peristalsis (alternate contraction and relaxation).

4. Lack troponin (protein that binds to Ca2+) , instead calmodulin binds to Ca2+ .

5. Both Acetylcholine & norepinephrine are neurotransmitters for smooth muscles .

6. Hormones and stretching affect smooth muscle contractions .

7. Can contract for a long period of time.

Cardiac muscle

a) unique arrangement of actin and myosin filaments produces the crossstriations (an optical illusion the microscope), and rapid contraction with powerful forces involved.

b) muscle cells are joined by **intercalated disks**, and allow muscle groups to form branching networks - both features are necessary for cardiac muscle to function as a unit (" sancytium").

c) **SR** and **T** tubules are well developed, so a large amount of calcium can be released rapidly through the T tubules.

d) contains more mitochondria in each muscle cell than skeletal and smooth muscles, providing more ATP energy for continuous contraction.

e) self- exciting muscle fibers form "pacemakers" which initiate spontaneous nerve impulses for autorthymic contraction . These pacemakers can be influenced by the autonomic nervous system and hormones.

Cardiac Muscle:

1. Contracts for a longer time than skeletal muscle

because transverse tubules supply extra Ca+2 ions .

2. intercalated disc connects the ends of adjacent muscles and hold cells together as a unit (syncytium).

3. Fibers contracts as a unit .

4. Muscle fibers are self – exiting , rhythmic , and remain refractory until a contraction is completed.

5. No Tetanic contractions.