

Tikrit University College of Veterinary Medicine

Physiology of Acid-Base Balance

Subject name: physiology Subject year: 2024 Lecturer name: Prof. Khalid A. Hadi Academic Email: <u>dr.physiologist@tu.edu.iq</u>

Lecturers link

Fikrit University- College of Veterinary Medicine Email: cvet.tu.edu.iq

2025-2024

Physiology of Acid-Base Balance

Introduction

- ▲ Acid-base homeostasis is the part of <u>human homeostasis</u> concerning the proper balance between <u>acids</u> and <u>bases</u>, in other words, the <u>pH</u>.
- ★ Chemical and physiologic processes responsible for the maintenance of the acidity of body fluids.

<u>ACIDS</u>

- Acids can be defined as a proton (H+) donor .
- ↔ Hydrogen containing substances which dissociate in solution to release H+.
- Physiologically important acids include:
 - ✤ Carbonic acid (H₂CO₃)
 - ✤ Phosphoric acid (H₃PO₄)
 - ✤ Pyruvic acid (C₃H₄O₃)
 - $\clubsuit \quad \text{Lactic acid } (C_3H_6O_3)$

BASES

- Bases can be defined as:
 - ♥ A proton (H^+) acceptor
 - ♥ Molecules capable of accepting a hydrogen ion (OH⁻)
- Physiologically important bases include:
 - Bicarbonate (HCO₃⁻)
 - Biphosphate (HPO₄- 2)

pH SCALE

• pH refers to <u>P</u>otential <u>H</u>ydrogen

H₂O		H⁺ + OH [.]
	• H ⁺ ion is an acid	

- OH⁻ ion is a base
- Normal blood pH is (Venous Blood) 7.35 (Arterial Blood) 7.5
- DEATH (6.8) DEATH (8.0)

• pH range compatible with life is 6.8 - 8.0

<u> Acidosis / Alkalosis</u>

• Acidosis

- ▲ A condition in which the blood has too much acid (or too little base), frequently resulting in a decrease in blood pH
- Alkalosis
 - ▲ A condition in which the blood has too much base (or too little acid), occasionally resulting in an increase in blood pH

<u>ACIDOSIS / ALKALOSIS</u>

• pH changes have dramatic effects on normal cell function

1) Changes in excitability of nerve and muscle cells

2) Influences enzyme activity

3) Influences K⁺ levels

> <u>Changes in Cell Excitability</u>

- pH decrease (more acidic) depresses the central nervous system
 - Can lead to loss of consciousness
- pH increase (more basic) can cause over-excitability
 - Tingling sensations, nervousness, muscle twitches
 - Influences on Enzyme Activity
 - pH increases or decreases can alter the shape of the enzyme make it non-functional.
 - Changes in enzyme structure can result in accelerated or depressed metabolic actions within the cell.
 - Influences On K+ Levels
 - ✤ When reabsorbing Na+ from the filtrate of the renal tubules K+ or H+ is secreted (exchanged).
 - ♦ Normally K+ is secreted in much greater amounts than H+
 - If H+ concentrations are high (acidosis) than H+ is secreted in greater amounts.
 - This leaves less K+ than usual excreted.
 - The resultant K+ retention can affect cardiac function and other systems.

Regulation of Acid Base Balance

- Two types of acids are produced in the body:
- ✓ <u>Volatile acids</u>: CO2 produced during the metabolism of carbohydrates and lipids
- ✓ <u>Non-volatile acids:</u> metabolism of protein e.g. sulphuric acids

Acid-base buffer system

- Maintains the pH by binding with free hydrogen ions.
- Combination of weak acid and a base (unprotonated compound).
- Three major chemical buffer systems:
 - 1. Bicarbonate system (extracellular)
 - 2. Phosphate system (intracellular)
 - 3. Protein system (Plasma)

BICARBONATE BUFFER SYSTEM

- This system is most important because the concentration of both components can be regulated:
 - ♥ <u>Carbonic acid</u> by the respiratory system
 - <u>Bicarbonate</u> by the renal system

PHOSPHATE BUFFER SYSTEM

- Regulates pH within the cells and the urine
 - > Phosphate concentrations are higher intracellular and within the kidney tubules.
 - > More phosphate ions are found in tubular fluids .
 - > More powerful than bicarbonate buffer system .

PROTEIN BUFFER SYSTEM

- Proteins are excellent buffers because they contain both acid and base groups that can give up or take up H⁺
- Proteins are extremely abundant in the cell
- The more limited number of proteins in the plasma reinforce the bicarbonate system in the ECF.

Chemosensitive Areas

- Chemo sensitive areas of the respiratory center are able to detect blood concentration levels of CO₂ and H⁺.
- Increases in CO₂ and H⁺ stimulate the respiratory center
- The effect is to raise respiration rates
- But the effect diminishes in 1 2 minutes

Renal Response

- The kidney compensates for Acid Base imbalance within 24 hours and is responsible for long term control
- The kidney in response:
 - <u>To Acidosis</u>
 - Retains bicarbonate ions and eliminates hydrogen ions
 - <u>To Alkalosis</u>
 - Eliminates bicarbonate ions and retains hydrogen ions