Dr.Reem.S.Najm C 2.

Lect.2.

test for reducing sugars

Two Experiment.

Benedict's test (A test for reducing sugars).

Object: To detect the presence of reducing sugars in the given solution by Benedict's test.

Principle:

the Principle is similar to that of the Fehling's Test, the reducing sugars can reduce Cupper ion (Cu^{+2}) to Cuprous ion (Cu^{+}) which is the basis of Benedict's Test and Fehling's Test.

Copper sulphate hydrolysis to from Cupric hydroxide. the hydroxide (OH⁻) group comes from dissociated of water. Cupric hydroxide is reduce to Cuprous oxide on heating with a reducing carbohydrates. Cuprous hydroxide during the process of heating is converted to red Cuprous oxide.

$$RCHO + 2Cu+^{2+} + 4OH \rightarrow RCOOH + Cu_2O + 2H_2O$$

$$\begin{array}{c} H = O \\ \downarrow \\ R \\ \text{An aldose} \\ \text{Benedict's reagent} \\ \text{(blue solution)} \\ \end{array} \begin{array}{c} -O \\ \downarrow \\ R \\ \text{Carboxylate} \\ \text{anion} \\ \end{array} \begin{array}{c} \text{Brick-red} \\ \text{precipitate} \\ \end{array}$$

Reagent

1-Copper sulphate 2-Sodium carbonate 3-Sodium citrate.

Benedict's reagent prepared by dissolving 173 gm of Sodium citrate and 90 gm of Sodium carbonate in about 750ml $\,H_2O$ mix and heat , dissolving 17.3 gm of Copper sulphate in about 100 ml $\,H_2O$, Add the solution of Sodium citrate and Sodium carbonate and Copper sulphate Made the volume up to 1000 ml with water.

Dr. Reem.S.Najm C 2.

Lect.2.

Procedure

Take 5ml of Benedict's reagent in the test tube, add 1ml of given solution mix and boil over aflame or a boiling water for 2 minutes cool the solution.

Color

Green

Yellow

Orange

Red

Brick Red

Blue

Lect.2. Bio Chemistry Laboratory Dr. Reem.S.Najm. C2.

Constitutent	Amount	Function
Copper sulphate	17.3 gm.	Furnishes cupric ions (Cu ⁺⁺)
Sodium carbonat	100 gm	Makes medium alkaline
Sodium citrate	173 gm.	Complexes with the copper (II) ions so that they do not deteriorate to copper (I) ions during storage.
Distilled water	Upto 1000 ml	Solvent

Experiment	Observation	Inference
Substance in water + 3ml Benedict's solution, then boil for few minutes and allow to cool	Red, green, or yellow precipitate is obtained	Reducing sugar is not present.
Substance in water # 3ml Benedict's solution, then boil for few minutes and allow to cool.	Solution remains clear or is a little blue	Reducing sugar is not present.

Dr. Reem.S.Najm.C2

Three Experiment Test for reducing sugars

Fehling's Test

Object: To detect the presence of reducing sugars in the given solution by Fehling's test

Principle

The carbohydrates having a free aldehydes or ketones group, the reducing sugars can reduce Cupric ion (Cu⁺²) to Cuprous ion(Cu⁺) which is the basis of Fehling's Test. The copper sulphate present in Fehling's Test reagent hydrolysis to give Cupric hydroxide. Cupric hydroxide, Cu(OH)₂ blue color is reduced Cuprous oxide Cu2O (red) on heating with a reducing carbohydrates. The color of the .solution change to from red to blue

RCHO + 2Cu⁺² + 4OH → RCOOH + Cu₂O + 2H₂O

Color

Blue

Yellow

Dr. Reem.S.Najm.C2

Lect.2.

Reagent

Two solutions are required:

Fehling's A'' uses 7%(34.65gm)CuSO₄.5H₂O dissolved in 500ml distilled water.

Fehling's "B" uses of potassium hydroxide, sodium potassium tartrate (Rochelle,s salt) it prepared by dissolved 125g of KOH and .173g of sodium potassium tartrate in 500ml distilled water.

These two solutions should be stoppered and stored until needed

For the test. Mix 15 ml of solution-"A" with 15 ml of solution-"B

Procedure

Add 2 ml of Fehling's test in test tube, and add 1ml of given solution heat in a boiling water for 2 minutes cool.

A positive test is indicated by a green suspension and a red precipitate.

(Fehling's test color)

Dr. Reem.S.Najm. C2

Lect.2

Comparison between Benedict's test& Fehling's test.

Fehling's test	Benedict's test
The Reagent is	The Reagent is
unstable	stable.
	201
It has to be prepared	Single solution is
in two parts and	prepared and storage
stored separately.	is convenient.
The strong alkali	Sodium carbonate is
(KOH) in The	a very weak base
Reagent can destroy	
the carbohydrates.	
It is a more sensitive	It is a less sensitive
test than Benedict's.	test than Fehling's
It is only qualitative	It is both qualitative
test	and semi qualitative
15513	test