

Dr. Reem.S.Najm

Lect.7.

$$K_{\rm w} = 1.0 \times 10^{-14}$$

• The product, [H₃O⁺][OH], is a constant, 1.0 × 10⁻¹⁴, for all aqueous solutions at 25 °C.

Thus, the value of Kw applies to any aqueous solution, not just pure water.

If we know the concentration of one ion, H_3O^+ or OH, we can find the concentration of the other by rearranging the expression for Kw.

To calculate [OH] when [H₃O⁺] is known:

To calculate [H₃O⁺] when [⁻OH] is known:

$$K_{\rm w} = [{\rm H}_3{\rm O}^+][{\rm ^-OH}]$$

$$[^{-}OH] = \frac{K_{w}}{[H_{3}O^{+}]}$$
 $[^{-}OH] = \frac{1.0 \times 10^{-14}}{[H_{3}O^{+}]}$

$$K_{\rm w} = [{\rm H_3O^+}][{\rm ^-OH}]$$

$$[H_3O^+] = \frac{K_w}{[-OH]}$$
 $[H_3O^+] = \frac{1.0 \times 10^{-14}}{[-OH]}$

Dr. Reem.S.Najm

Lect.7.

Pure water and any solution that has an equal concentration of H_3O^+ and -OH ions (1.0×10^{-7}) is said to be neutral.

Other solutions are classified as acidic or basic, depending on which ion is present in a higher concentration.

In an acidic solution, $[H_3O^+] > [-OH]; \ thus, \ [H_3O^+] \\ > 10^{-7} \ M$

In a basic solution, ["OH] > [H3O*]; thus, ["OH] > 10⁻⁷ M

Dr. Reem.S.Najm

Lect.7.

Table 2 Neutral, Acidic, and Basic Solutions

Туре	[H ₃ O ⁺] and [⁻ OH]	[H ₃ O ⁺]	[⁻ OH]	
Neutral	[H ₃ O ⁺] = [⁻ OH]	10 ⁻⁷ M	10 ⁻⁷ M	
Acidic	[H ₃ O ⁺] > [⁻ OH]	$> 10^{-7} M$	$< 10^{-7} M$	
Basic	[H ₃ O ⁺] < [⁻OH]	$< 10^{-7} M$	> 10 ⁻⁷ M	

SAMPLE

If $[H_3O^+]$ in blood is 4.0×10^{-8} M, what is the value of [OH]? Is blood acidic, basic, or neutral?

Analysis

Use the equation [${}^{-}$ OH] = K_{w} /[H_{3} O $^{+}$] to calculate the hydroxide ion concentration.

Solution

Substitute the given value of [H₃O⁺] in the equation to find [⁻OH].

[OH] =
$$\frac{K_w}{[H_3O^+]}$$
 = $\frac{1.0 \times 10^{-14}}{4.0 \times 10^{-8}}$ = 2.5×10^{-7} M hydroxide ion concentration in the blood

Since $[\ OH] > [H_3O^+]$, blood is a basic solution.

PROBLEM 3

Calculate the value of [$^{-}$ OH] from the given [$^{+}$ H $_{3}$ O $^{+}$] in each solution and label the solution as acidic or basic: (a) [$^{+}$ H $_{3}$ O $^{+}$] = $^{-10}$ M; (b) [$^{+}$ H $_{3}$ O $^{+}$] = $^{-11}$ M; (c) [$^{+}$ H $_{3}$ O $^{+}$] = $^{-10}$ M; (d) [$^{+}$ H $_{3}$ O $^{+}$] = $^{-10}$ M.

PROBLEM 4

Calculate the value of [H₃O⁺] from the given [OH] in each solution and label the solution as acidic or basic: (a) [OH] = 10^{-6} M; (b) [OH] = 10^{-9} M; (c) [OH] = 5.2×10^{-11} M; (d) [OH] = 7.3×10^{-4} M.

In 0.1 M HCl solution: $[H_3O^+] = 0.1 \text{ M} = 1 \times 10^{-1} \text{ M}$ strong acid

In 0.1 M NaOH solution: $[OH] = 0.1 M = 1 \times 10^{-1} M$

strong base

. .

Lect.7. General Chemistry

Dr. Reem.S.Najm

Lect.7.

Example

Calculate the value of [H_3O^+] and [^-OH] in a 0.01 M NaOH solution.

Solution

The value of [$^{-}$ OH] in a 0.01 M NaOH solution is 0.01 M = 1 \times 10 $^{-2}$ M.

$$[H_3O^+] = \frac{K_w}{[^-OH]} = \frac{1 \times 10^{-14}}{1 \times 10^{-2}} = 1 \times 10^{-12} \text{ M}$$

$$\text{concentration of } ^-OH$$

PROBLEM

Calculate the value of [H₃O⁺] and [$^{-}$ OH] in each solution: (a) 0.001 M NaOH; (b) 0.001 M HCl; (c) 1.5 M HCl; (d) 0.30 M NaOH.(e) 0.1 M NH₃ (f) 0.1M CH₃COOH $K_a = K_b = 1 \times 10^{-5}$

Lect.7.

7.1 The pH Scale.

Knowing the pH value of a solution or fluid is very important for many chemical and analytical tasks and its measurement determines any follow up measurements.

Taking a pH measurement often seems to be trivial, which is the reason why pH measurements are frequently not questioned.

But to make a useful pH measurement close attention must be paid to the measurement's details.

To make a proper pH measurement and avoid errors you must first be familiar with the basics of pH measurement.

Dr. Reem.S.Najm

Lect.7.

The elementary questions are:

What defines the pH-value?

How do I measure the pH value?

Where and why are pH measurements made?

The concentrations of hydrogen ions and indirectly hydroxide ions are given by a pH number.

pH is defined as the negative logarithm of the hydrogen ion concentration. The equation is:

$$pH = -\log [H^+]$$

similarly, $pOH = -\log [OH^{-}]$

and p Kw = - log [Kw]

Dr. Reem.S.Najm

<u>Lect.7.</u>

 $pH = -log [H_3O^+]$

A logarithm is an exponent of a power of ten.

The log is the exponent.

log(10⁻¹⁰) -

The log is the exponent.

 $\log(0.001) = \log(10^{-3}) = -3$

Convert to scientific notation.

Assistant professoer V

Dr. Reem.S.Najm

Lect.7.

Logarithms of numbers that are multiples of ten are merely the exponents of the number including the sign. See the table on the left for a review.

Assistant professoer Dr. Reem S. Waim 2023 12 The method to find logs of numbers that are not multiples of ten

Dr. Reem.S.Najm

Lect.7.

Example

If an acid has an H⁺ concentration of 0.0001 M, find the pH?

Solution: First convert the number to exponential notation, find the log, then solve the pH equation.

$$H^+ = 0.0001M = 10^{-4}$$
; log of $10^{-4} = -4$

$$pH = -\log [H^{+}] = -\log (10^{-4}) = -(-4) = -4 = pH$$

The purpose of the negative sign in the log definition is to give a positive pH value.

Example:

If the base has an OH- concentration of 0.001M, find the pH.

Solution: First find the pOH, (similar to finding the pH,) then subtract the pOH from 14.

$$OH^{-} = 0.001M = 10^{-3}$$

$$pOH = -log [OH-] = -log (10-3) = +3 = pOH$$

$$pH = 14 - pOH$$

$$pH = 14 - 3 = 11 = pH$$

The pH scale, (0 - 14), is the full set of pH numbers which indicate the concentration of H and OH ions in water.

The diagram on the left gives some relationships which summarizes much of the previous discussion.

Whether a solution is acidic, neutral, or basic can now be defined in terms of its pH.

Dr. Reem.S.Najm

<u>Lect.7.</u>

Acidic solution: $pH < 7 [H_3O^+]$

 $>1\times10^{-7}$

Neutral solution: $pH = 7 [H_3O^+] = 1 \times 10^{-7}$

Basic solution: pH > 7 [H_3O^+] < 1 × 10^{-7}

Dr. Reem.S.Najm

Lect.7

Note the relationship between [H₃O⁺] and pH.

The lower the pH, the higher the concentration of H₃O⁺

OH ion concentration and pH relate directly.

OH, Reem. Walnut A. H⁺ ion concentration and pH relate inversely.