## Lect.7.

$$
K_{w}=1.0 \times 10^{-14}
$$

- The product, $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right][-\mathrm{OH}]$, is a constant, $1.0 \times 10^{-14}$, for all aqueous solutions at $25^{\circ} \mathrm{C}$.

Thus, the value of Kw applies to any aqueous solution, not just pure water.

If we know the concentration of one ion, $\mathrm{H}_{3} \mathrm{O}^{+}$or OH , we can find the concentration of the other by rearranging the expression for Kw.

## To calculate [ $\left.{ }^{-} \mathrm{OH}\right]$ when $\left[\mathrm{H}_{3} \mathrm{O}^{\dagger}\right]$ is known:

$$
\left.K_{w}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{[ }^{-} \mathrm{OH}\right]
$$

$$
\begin{aligned}
& {[\mathrm{OH}]=\frac{K_{\mathrm{w}}}{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}} \\
& {[\mathrm{OH}]=\frac{1.0 \times 10^{-14}}{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}}
\end{aligned}
$$

To calculate $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$when $[\mathrm{OH}]$ is known:

$$
\left.K_{w}=\left[H_{3} \mathrm{O}^{+}\right]_{[ }^{-O H}\right]
$$

$$
\begin{aligned}
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{\mathrm{K}_{\mathrm{w}}}{[\mathrm{OH}]}} \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{1.0 \times 10^{-14}}{[\mathrm{OH}]}}
\end{aligned}
$$

## Lect. 7.

Pure water and any solution that has an equal concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$and -OH ions $\left(1.0 \times 10^{-7}\right)$ is said to be neutral.

Other solutions are classified as acidic or basic, depending on which ion is present in a higher concentration.

In an acidic solution, $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>[-\mathrm{OH}]$; thus, $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$ $>10^{-7} \mathrm{M}$

In a basic solution, $\left[{ }^{-} \mathrm{OH}\right]>\left[\mathrm{HBO}^{+}\right]$; thus, $\left[{ }^{-} \mathrm{OH}\right]$ $>10^{-7} \mathrm{M}$

Lect. 7.
Table. 2 Neutral, Acidic, and Basic Solutions

| Type |  | [ $\mathrm{H}_{3} \mathrm{O}^{+}$ | [ OH$]$ |
| :---: | :---: | :---: | :---: |
| Nedrad |  | $10^{-7}$ | $10^{-7} M$ |
| Acido |  | >10 $0^{7} \mathrm{M}$ | $<10^{-7} \mathrm{M}$ |
| Basic | $\mathrm{H}_{2} \mathrm{H}^{\circ} \mathrm{l} \times$ [ OH$]$ | $<10^{-7} \mathrm{M}$ | >1074 |

## SAMPLE

If $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in blood is $4.0 \times 10^{-8} \mathrm{M}$, what is the value of [ ${ }^{-} \mathrm{OH}$ ? Is blood acidic, basic, or neutral?
Analysis
Use the equation $[-\mathrm{OH}]=K_{\mathrm{w}} /\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$to calculate the hydroxide ion concentration.

## Solution

Substitute the given value of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in the equation to find $[-\mathrm{OH}]$.

$$
[\mathrm{OH}]=\frac{K_{\mathrm{w}}}{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}=\frac{1.0 \times 10^{-14}}{4.0 \times 10^{-8}}=2.5 \times 10^{-7} \mathrm{M}
$$

Since $[\mathrm{OH}]>\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$, blood is a basic solution.

## PROBLEM 3

Calculate the value of $[-\mathrm{OH}]$ from the given $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in each solution and label the solution as acidic or basic: (a) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-3} \mathrm{M}$; (b) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-11} \mathrm{M}$; (c) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=2.8 \times 10^{-10} \mathrm{M}$; (d) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=5.6 \times 10^{-4} \mathrm{M}$.

## PROBLEM 4

Calculate the value of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$from the given [ OH ] in each solution and label the solution as acidic or basic: (a) $[\mathrm{OH}]=10^{-6} \mathrm{M}$; (b) $[\mathrm{OH}]=10^{-9} \mathrm{M}$; (c) $[\mathrm{OH}]=5.2 \times 10^{-11} \mathrm{M}$; (d) $[\mathrm{OH}]=7.3 \times 10^{-4} \mathrm{M}$.

$$
\begin{array}{ll}
\text { In } 0.1 \mathrm{M} \mathrm{HCl} \text { solution: } \\
\text { strong acid }
\end{array} \quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.1 \mathrm{M}=1 \times 10^{-1} \mathrm{M} .
$$ strong base

## Lect. 7.

## Example

Calculate the value of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $[\mathrm{OH}]$ in O 0.01 M NaOH solution.

## Solution



## PROBLEM




## Lect.7.

### 7.1 The pH Scale.

Knowing the pH value of a solution or fluid is very important for many chemical and analytical tasks and its measurement determines any follow up measurements.

Taking a pH measurement often seems to be trivial, which is the reason why pH measurements are frequently not questioned.

But to make a useful pH measarement close attention must be paid to the measurement's details.

To make a proper pH measurement and avoid errors you must first be familian with the basics of pH measurement.

## Lect.7.

## The elementary questions are:

What defines the pH -value?
How do I measure the $\mathrm{pH}^{-}$value?
Where and why are pH measurements made?
The concentrations of hydrogen ions and indirectly hydroxide ions are given by a pH number.
pH is defined as the negative logarithm of the hydrogen ion concentration. The equation is:
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
similarly, $\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$
and $\mathrm{p} \mathrm{Kw}=-\log [\mathrm{Kw}]$

## Lect.7.

## $\mathrm{pH}=-\operatorname{tag}\left[\mid \mathrm{HO} \mathrm{O}^{+}\right]$




## Lect.7.

Logarithms of numbers that are multiples of ten are merely the exponents of the number including the sign. See the table on the left for a review.
The method to find logs of numbers that are not multiples of ten are found by using a calculator.

The method is not discussed here.

## Lect.7.

## Example

If an acid has an $\mathrm{H}^{+}$concentration of 0.0001 M , find the pH ?

Solution: First convert the number to exponential notation, find the log, then solve the pH equation.
$\mathrm{H}^{+}=0.0001 \mathrm{M}=10^{-4} ; \log$ of $10^{-4}=-4$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log \left(10^{-4}\right)=^{-}(-4)==^{7} 4=\mathrm{pH}$
The purpose of the negative sign in the log definition is to give a positive pH value.

## Lect.7.

## Example:

If the base has an OH - concentration of 0.001 M , find the pH .
Solution: First find the pOH , (similar to finding the pH ,) then, subtract the pOH from 14.
$\mathrm{OH}^{-}=0.001 \mathrm{M}=10^{-3}$
$\mathrm{pOH}=-\log [\mathrm{OH}-]=-\log (10-3)={ }^{+} 3=\mathrm{pOH}$
$\mathrm{pH}=14-\mathrm{pOH}$
$\mathrm{pH}=14-3=11=\mathrm{pH}$
The pH scale, $(0-14)$, is the full set of pH numbers which indicate the concentration of $\mathrm{H}^{+}$and $\mathrm{OH}^{-}$ions in water.

The diagram on the left gives some relationships which summarizes much of the previous discussion.

Whether a solution is acidic, neutral, or basic can now be defined in termis of its pH .

## Lect.7.

Acidic solution: $\mathbf{p H}<7\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$>1 \times \mathbf{1 0}^{-7}$

Neutral solution: $\mathbf{p H}=7\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\mathbf{1}$
$\times 10^{-7}$

Basic solution: $\mathrm{pH}>\mathbf{7}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]<1 \times 10^{-7}$

## Lect.7. General Chemistry

## Lect. 7

Note the relationship between $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and pH .
The lower the pH , the higher the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$
$\mathrm{H}^{+}$ion concentration and pH relate inversely.
$\mathrm{OH}^{-}$ion concentration and pH relate directly.

